Standardisation of rates using logistic regression: a comparison with the direct method

نویسندگان

  • Andrea K Roalfe
  • Roger L Holder
  • Sue Wilson
چکیده

BACKGROUND Standardisation of rates in health services research is generally undertaken using the direct and indirect arithmetic methods. These methods can produce unreliable estimates when the calculations are based on small numbers. Regression based methods are available but are rarely applied in practice. This study demonstrates the advantages of using logistic regression to obtain smoothed standardised estimates of the prevalence of rare disease in the presence of covariates. METHODS Step by step worked examples of the logistic and direct methods are presented utilising data from BETS, an observational study designed to estimate the prevalence of subclinical thyroid disease in the elderly. Rates calculated by the direct method were standardised by sex and age categories, whereas rates by the logistic method were standardised by sex and age as a continuous variable. RESULTS The two methods produce estimates of similar magnitude when standardising by age and sex. The standard errors produced by the logistic method were lower than the conventional direct method. CONCLUSION Regression based standardisation is a practical alternative to the direct method. It produces more reliable estimates than the direct or indirect method when the calculations are based on small numbers. It has greater flexibility in factor selection and allows standardisation by both continuous and categorical variables. It therefore allows standardisation to be performed in situations where the direct method would give unreliable results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of artificial neural network with logistic regression in prediction of tendency to surgical intervention in nurses

Introduction: Logistic regression is one of the modeling methods for bipartite dependent variables. On the other hand, artificial neural network is a flexible method with the least limitation. The importance of growing unnecessary beauty surgeries and the importance of prediction and classification made us consider the present study, with the aim of comparing logistic regression and artificial ...

متن کامل

Direct risk standardisation: a new method for comparing casemix adjusted event rates using complex models

BACKGROUND Comparison of outcomes between populations or centres may be confounded by any casemix differences and standardisation is carried out to avoid this. However, when the casemix adjustment models are large and complex, direct standardisation has been described as "practically impossible", and indirect standardisation may lead to unfair comparisons. We propose a new method of directly st...

متن کامل

Comparison of Random Forest and Logistic Regression Methods in Predicting Mortality in Colorectal Cancer Patients and its Related Factors

Background and Objectives: The purpose of this study was to predict the mortality rate of colorectal cancer in Iranian patients and determine the effective factors  on the mortality of patients with colorectal cancer using random forest and logistic regression methods.   Methods: Data from 304 patients with colorectal cancer registry from the Gastroenterology and Liver Research Center of Shah...

متن کامل

ارتباط استرس و سبک‌های مقابله‌ای با بیماری کرونری قلب: نقش عامل جنسیت

Objectives: This study was carried out to investigate the relationship of coping styles and stress with Coronary Heart Disease (CHD), as well as evaluating inefficient coping styles in patients with this disease. Method:  In a case-control study, 80 patients with coronary heart disease (40 males, 40 females) who had presented to Shahid Madani Hospital in the city of Tabriz were compared with 80...

متن کامل

Ranking stocks of listed companies on Tehran stock exchange using a hybrid model of decision tree and logistic regression

Much research has introduced linear or nonlinear models using statistical models and machine learning tools in artificial intelligence to estimate Iran's rate of return. The primary purpose of these methods is simultaneously use different independent variables to improve stock return rates' modeling. However, in predicting the rate of return, in addition to the modeling method, the degree of co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • BMC Health Services Research

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2008